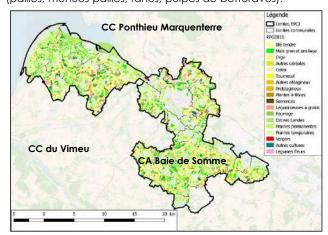
Étude de Planification Énergétique de la Communauté d'Agglomération de la Baie de Somme

Perspectives énergétiques du territoire – Phase 2

Idéalement située au centre du territoire de Baie de Somme 3 Vallées, la Communauté d'Agglomération de la Baie de Somme est une intercommunalité de référence dans la Somme. Son attractivité touristique, de par sa proximité du littoral, ainsi que son activité économique la caractérisent.

Ses 43 communes sont articulées autour du pôle urbain d'Abbeville, la plus grande ville du territoire de BS3V. La position stratégique des communes au sud de l'intercommunalité ainsi que la desserte d'Abbeville en transports en commun et en voies rapides favorisent les flux d'échanges avec les pôles d'activité voisins (Amiens, Rouen). Les communes donnant sur le littoral, quant à elles, connaissent une forte activité de tourisme de mer, attirant des visiteurs de l'extérieur du territoire.

Possibilités de développement des énergies renouvelables et de récupération Quelques points méthodologiques


La première phase de l'Étude de Planification Énergétique a permis de dresser le portrait énergétique du territoire : consommation, productions d'EnR&R, réseaux. La deuxième phase est plus exploratoire puisqu'il s'agit d'indiquer conjointement le potentiel de réductions des consommations d'énergie et les possibilités de développement des EnR, dans l'état actuel des technologies.

Les méthodes pour déterminer ces potentiels de développement sont assez variés selon les filières. Dans tous les cas, il n'y a jamais un seul potentiel de développement puisque les possibilités sont toujours étroitement liées aux conditions techniques et économiques des projets.

Les productions possibles de gaz renouvelable sur le territoire

De nombreuses matières peuvent être méthanisées pour produire du biogaz : matières issues de l'élevage, coproduits des cultures, déchets des industries agroalimentaires, boues de stations d'épuration.

Tous ces gisements ont été calculés et il en ressort que le principal potentiel de développement se situe dans la valorisation des coproduits des cultures (pailles, menues pailles, fanes, pulpes de betteraves).

Carte des cultures principales - RPG 2016

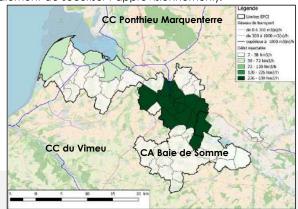
Les capacités d'injection sur le réseau de distribution ont été étudiées : il existe 4 poches de distribution sur le territoire et seule la poche d'Abbeville permet l'injection. Le développement de méthaniseurs devrait cependant amener à des adaptations substantielles du réseaux ce qui permettrait à chaque projet d'être étudié.

Type de substrats méthanisables

Lisiers et fumiers de l'élevage 38,3

Coproduits de l'agriculture 165,0

Déchets des industries agroalimentaires 0,8


Boues des stations d'épuration 1,8

TOTAL 205,9

L'ensemble des substrats représente ainsi un total environ 206 GWh/an, soit une dizaine de grands méthaniseurs potentiellement installables.

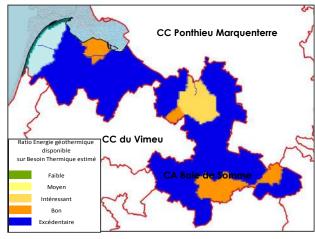
A l'horizon 2030, l'objection recherché est d'atteindre la production de **44 GWh/an**, soit environ 4 méthaniseurs pour situer l'intercommunalité sur la trajectoire promue par la région Hauts-de-France.

Ce potentiel peut être augmenté par les Cultures Intermédiaires à Vocation Energétique (qui permettent également de sécuriser l'approvisionnement).

Potentiel d'injection de biogaz sur le réseau de distribution de gaz du territoire

Potentiel de développement des énergies renouvelables

Les productions possibles de chaleur renouvelable sur le territoire


Géothermie

La géothermie, qui consiste à puiser l'énergie dans le sol, peut exister sous 2 formes sur le territoire : la géothermie basse énergie qui se déploie essentiellement dans un ensemble urbain ou dans un réseau de chaleur, et la géothermie très basse énergie, utilisable à une plus petite échelle.

Concernant la géothermie très basse énergie, le territoire est favorable à la géothermie en <u>aquifère superficiel</u> avec une majorité de communes où l'énergie disponible serait plus importante que les besoins thermiques.

En cas de ressource faible, des <u>sondes géothermiques</u> peuvent être installées si le nombre de sondes nécessaires pour couvrir le besoin thermique est limité à une dizaine d'unités

Étant donné les contraintes particulières de cette forme d'énergie, il convient d'agir plus particulièrement dans une logique d'opportunité quand un projet urbanistique se met en place en zone favorable.

Carte des zones favorables pour la géothermie sur sondes (Source : BRGM)

Bois-énergie

Les différentes quantités de bois disponibles sur le territoire pour l'énergie ont été évalués selon leur provenance (bois forestier, bois bocager et bois déchet).

En regard de la consommation actuelle de **111 GWh/an** en bois énergie du territoire, le territoire est à priori importateur. Cependant, il existe un potentiel de développement de <u>petites unités collectives</u> dans le cadre d'une <u>filière locale</u> <u>d'approvisionnement</u>. Ce développement pourrait accompagné d'une amélioration des rendements des installations domestiques.

Ressource	Equivalent en GWh/an	
Bois forestiers	35,2	
Bois bocagers	6,1	
Bois déchets	10,6	
TOTAL	51,9	

Solaire thermique

La filière du solaire thermique, encore émergente, a besoin de projets exemplaires et de qualité pour se relancer. Créer une ou plusieurs installations collectives de production d'eau chaude sanitaire avec l'aide d'AMO compétentes permettra de renforcer cette filière émergente.

Récupération de chaleur fatale

La récupération de « chaleur perdue » lors de processus industriels, aussi appelée chaleur fatale, permet de valoriser de la chaleur pour des besoins internes ou externes par le biais d'un réseau de chaleur.

Cette chaleur fatale est valorisable à un niveau considérable sur les processus d'industries des métaux, du verre ou du ciment. Seule l'entreprise **FAVI située à Hallencourt** semble utiliser une unité de combustion à ce niveau de température.

Les industries « organiques » (comme l'agroalimentaire ou la fabrication de papier) présentent des températures inférieures en bout de process.

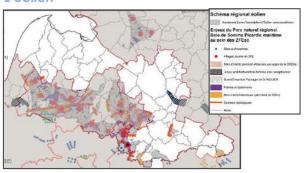
Si la valorisation de cette chaleur excédentaire n'est pas forcément aisée pour remplacer des besoins actuels (éloignement de la source de chaleur vis-à-vis des lieux de consommations), on peut également envisager le développement de nouvelles activités.

Réseau de chaleur

Le potentiel de réseau de chaleur sur le territoire est déterminé à partir de l'étude de la consommation de chaleur au mètre de linéaire. La cartographie de l'ensemble des communes concernées est disponible auprès de BS3V.

Le linéaire pour lequel la consommation totale de supérieure à la limite de rentabilité d'un réseau de chaleur est important sur le territoire (21 km), en particulier sur la commune d'Abbeville qui représente 95% de ce potentiel. Le reste du potentiel se répartit ensuite sur les communes de Cambron, Cayeux-sur-Mer, Drucat et Grand-Laviers.

Potentiel de développement des énergies renouvelables


Les productions possibles d'électricité renouvelable

L'hydroélectricité

Le territoire compte peu de sites intéressants pour l'hydroélectricité, en l'absence de relief notamment. Le seul cours d'eau présentant un débit intéressant est la Somme, géré par le Département. Le seul obstacle pouvant accueillir éventuellement un aménagement hydroélectrique conséquent est <u>l'écluse de d'Abbeville</u>.

La puissance de cet ouvrage serait de l'ordre de 650 kW. Cette utilisation du cours d'eau pour produire de l'électricité doit néanmoins s'accorder avec l'usage principal de celui-ci pour la navigation et offrir une rentabilité suffisante.

L'éolien

Vue aérienne de l'écluse d'Abbeville Google Satellite

Le syndicat mixte Baie de Somme 3 Vallées a conçu un Schéma d'Insertion de l'Eolien afin de déterminer finement les enjeux du territoire vis-à-vis de l'implantation de nouvelles éoliennes.

Au regard de ces enjeux et du projet de SRCAE, il n'est pas proposé de développement éolien pour le territoire.

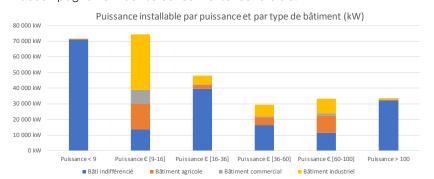
Centrales au sol photovoltaïque

La création d'une centrale solaire au sol ne peut s'envisager que sur des terres ne présentant pas une utilité autre, notamment en évitant les terres agricoles. Les cibles privilégiées sont donc les friches et les terrains pollués dont la liste complète est disponible auprès de BS3V.

Abelia Decors (friche industrielle)
Abbeville
11 ha – 4,3 MWc installable
Google Satellite

Ancienne centrale EDF (friche SNCF)
Abbeville
2 ha – 0,65 MWc installable
Google Satellite

FTH (friche industrielle)
Cayeux-sur-Mer
1,5 ha – 0,57 MWc installable
Google Satellite

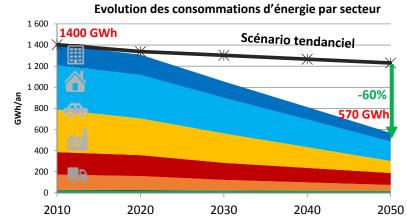

Toitures photovoltaïques

L'analyse du bâti et des toitures du territoire ont permis de déterminer la surface de panneaux installable en fonction du type d'activité du bâtiment et donc la puissance disponible. Cette surface représente 2 millions de m² et 290 MW de puissance disponible pour le photovoltaïque. Le tableau ci-dessous présente la répartition par typologie de bâtiment.

Les installations de petites puissances, associées majoritairement au bâti résidentiel, représente le plus grand potentiel. Il s'agit néanmoins d'une puissance très dispersée, qui nécessite la réalisation d'un très grand nombre de projets. Des actions territoriales peuvent être menées pour encourager les propriétaires, comme la mise en place d'un cadastre solaire et d'un accompagnement en ingénierie.

Viennent ensuite les installations de grandes puissances correspondant aux toitures de bâtiments industriels et agricoles.

L'accompagnement doit se concentrer sur cette cible.


Concentration de grandes toitures dans la zone industrielle d'Abbeville

Potentiel de réduction des consommations énergétiques du territoire

La CA de la Baie de Somme consomme en moyenne 1 432 GWhEF/an, soit 28 MWh/hab.an.

En prenant en compte une diminution de la population de 3,3% d'ici à 2050 (scénario central de l'INSEE) et selon une évolution tendancielle reprenant les principales évolutions attendues au niveau national (réglementation, évolution des pratiques) la consommation du territoire est amenée à diminuer de 12% entre 2010 et 2050.

En appliquant des hypothèses ambitieuses sur le territoire on parvient à une diminution des consommations de 60% ce qui est supérieur à l'objectif actuellement affiché dans le SRADDET (-50%). Cette diminution est particulièrement importante sur les produits pétroliers (-84%) ce qui permet de diminuer la dépendance aux énergies fossiles ainsi que les émissions de GES associées.

Mohilité

Gain par rapport au tendanciel : 68%

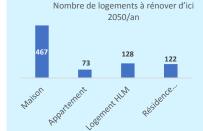
Hypothèses principales :

Adaptation du scénario NégaWatt prenant en compte les spécificités du territoire (4 classes urbain / rural). En moyenne pour le territoire les variation de part modale en voyageur.km sont les suivantes:

	2010	2050
Ferroviaire	1%	5%
Bus et Autocar	1%	4%
Mode doux	2%	12%
Voiture	43%	35%

Le covoiturage est renforcé avec un passage de 1,3 personnes/véhicule en 2010 à 1,5 en 2050. Les motorisations évoluent également et une mutation vers le GNV et l'électrique est observée : 66% de GNV et 23% d'électricité en 2050.

Potentiel de réduction


La mobilité est le 1 er secteur en termes de gisement : 290 GWh soit 35% du potentiel total. Les changements de comportements de mobilité demandent une grande implication des collectivités à la fois en matière d'aménagement du territoire (mixité, maintien des commerces), de création d'infrastructures et de sensibilisation.

Résidentiel

Gain par rapport au tendanciel: 66%

Hypothèses principales :

Rénovation de 95% des logements au niveau BBC.

Potentiel de réduction

Le résidentiel est le second secteur présentant le plus important potentiel de réduction des consommations : 234 GWh soit 28% du potentiel total

Les maisons individuelles constituent la cible la plus importante mais les logements HLM sont la seconde cible la plus concernée ce qui constitue une spécificité du territoire

Industrie

Gain par rapport au tendanciel: 66%

Hypothèses principales :

Application des hypothèses du scénario national « avec mesures supplémentaires 2 » (le plus performant) par branche.
Les valeurs calleulés à partir de ces hypothèses per deprése à title indicatif par elles alort page.

Les vaieurs calculees à pariir de ces hypotneses sont données à titre indicatif, car elles n'ont pas été adaptées aux process effectivement mis en œuvre dans les industries du territoire du fait de leur multiplicité et de leur caractère confidentiel.

Potentiel de réduction

L'industrie est le 4ème secteur présentant le plus important potentiel de réduction des consommations : 101 GWh soit 12% du potentiel total

La mise en place d'un travail partenarial est nécessaire pour atteindre de tels objectifs et notamment pour favoriser les actions interentreprises (mise en place de projets d'économie circulaire et actions de sensibilisation par exemple).

FRET

Gain par rapport au tendanciel : 30%

Le développement des circuits courts, le renforcement des modes ferroviaires et fluviaux et l'amélioration de la performance des moteurs selon le scénario Negawatt permettent de réduire les consommations du secteur de 86GWh. représentant 10% du potentiel total.

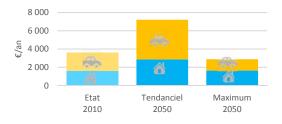
Evolution des parts modales pour le territoire

icilione			
	2010	2050	
Ferroviaire	6%	24%	
Fluvial	3%	7%	
Maritime	34%	32%	
Routier non précisé	56%	36%	

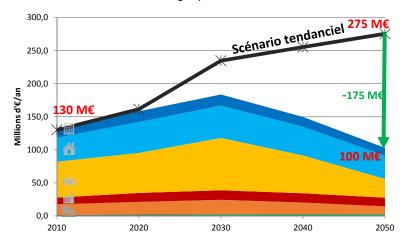
Tertiaire

Gain par rapport au tendanciel: 57%

La rénovation BBC de 95% des surfaces permet de réduire la consommation du secteur 115GWh représentant 14% du potentiel total.


Si on ne fait rien :

- La facture énergétique du territoire sera multipliée par 2
- Les ménages dépendant de la voiture seront les plus touchés


Le scénario potentiel maximum

 Il permet de diminuer légèrement la facture énergétique du territoire (-21%)et notamment des ménages qui seront ainsi moins exposés à la précarité énergétique

Répartition des dépenses des ménages par secteur selon le scénario tendanciel et scénario baisse maximum

Evolution de la facture énergétique du territoire entre 2010 et 2050

